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EXTENT TO WHICH LEAST-SQUARES CROSS-VALIDATION

MINIMISES INTEGRATED SQUARE ERROR IN NONPARAMETRIC

DENSITY ESTIMATION

by DTIC

Peter Hall1 '2 and James Stephen Marron3  MAY 1 7 185

University of North Carolina, Chapel Hill

Abstract. Let h h1 and h be the windows which minimise mean integrated
0 0 C

square error, integrated square error and the least-square cross-validatory

criterion, respectively, for kernel density estintes. It is argued that

not hop should be the benchmark for comparing different data-driven

approaches to the determination of window size. Asymptotic properties of

h -h and h -h 0 and of differences between integrated square errors0 0 c O'

evaluated at these windows, are derived. It is shown that in comparison

to the benchmark he, the observable %indow h performs as well as the so-

called "optimal" but unattainable window ho , to both first and second order.

,r* : Integrated square error and cross-validation.

A. 29,9) mFJot ,, ::e .- '*',"* ." Prirn- v 02GO5, Secondaky 02E20, 021199

@ . , z,; ra : cross-validation, integrated square error, kernel,

least squires, mean integrated squre error, nonparametric dens ity-

estimation, window size.
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1. Introductton. Let XI,.. ,X be a random sample from a distribution

with unknown density f on IR, and let

f n(xlh) _-(nh) -I n fxX)h

i=1

£ be a nonparametric estimator of f based on kernel K and window h.

The problem of choosing h so as to 'minimise error", in some sense, is

legion in the theory and practice of nonparametric density estimation.

Commonly, the criterion used to measure loss is mean integrated square

error (MISE),

2
M(h) z- fJE{fn(Xh ) - f(x)} dx

See for example Rosenblatt [17]. This approach has its roots in classical

theory of nonparametric density estimation, where the window h is taken

to be non-random. Of course, the value ho which minimises Mi(h) depends

on the unknown density f. Any attempt to estimate this "optimal" h

must result in a window which is a function of the sample values. That

is, the value of h must in practice be a random variable. Bearing this

in mind, it seems to us that one should try from the outset to minimise

integrated square error (ISE),

A(h) )'ifn(xlh) f(x)} dx,

instead of MISE. If h (a random variable) minimizes A,and h (non-random)
0 0

minimizes M, then E{A(ho)) > E{A(h )1. In this sense, h improves on h
0 - 0 0 0

* Let h be a "data-driven" bandwidth, estimated from the sample in some

way. Our aim in this paper is to examine the distance between h and h0

,S - > i''"" - " '" " - '. i i -' -,v. .

"0 . "S " i '. . . - ' "7 -'-.•- V
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and the distance between A(h) and A(ho). Of course, A(h) > A(ho).

We ask: how much greater than the mininum, A(h0 ), is A(h)?

There are at least two approaches to constructing h: the classical

argument, which essentially tries to estimate ho and least-squares

cross-validation (Bowman [2], [3]; Rudemo [19]). The cross-validatory

window is that value h which minimizes
c

2 n

CV(h) = ff2 (xlh)dx - n (Xi h)n f XU ~i=lfl 1

where fni(Xlh) {(n-i)h} -I  K{(x-Xj)/h} is the kernel density estimate
jii

obtained by leaving out sample value Xi. The intuitive appeal of cross-

validation is that it sidesteps secondary issues such as theoretical

properties of MISE, and goes straight to the heart of the problem, by

minimimizing an estimate of A(h) - ff 2 . (Notice that CV(h) is unbiased

for Mh) - ff2.) We shall show that this directness pays dividends. In

S.-a range of situations, including the multivariate case, the difference

between A(h ) and A(ho) is of the same order of magnitude as the difference
c o

between A(h ) and A(h ), under minimal smoothness conditions on f.

(The conmon order is n-.) In this sense, the classical "best but un-

achievable strategy" of using h is no better than the achievable0

strategy of least-squares cross-validation. Furthermore, neither h nor

consistently outperforms the other, since probabilitiesC

SP{A(h) > A(h )}, P{A(h ) < A(h o)}

both converge to strictly positive limits.

,U ' ...' -: , " " : : - : :7 ." '- -" ". . : : , -.
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One class of competitors to h consists of two-stage ("plug-in")

procedures, which aim to estimate the constant c0 in the asymptotic

formula h 0 c 0n-1/5 (valid in one dimension). They cannot be expected

to perform better than if the precise value of h0 had been available.

They can produce windows h for which A(h) - /(ho) is of a larger order^0

of magnitude than A(ho) - A(h ), depending on their construction and the
0 0

extent of additional smoothness assumptions.

We shall close this section by relating our contributions to

recent work in the area. Theorem 2.3 of Rice (1984) is close to our

Theorem 2.1, but in the context of nonparametric regression. Asymptotic

first-order optimality of least-squares cross-validation in density

estimation has been established by Hall [11], [13] and Stone [21];

Stone's work assumes minimal conditions on f. Other forms of cross-

validation in nonparametric density estimation have been considered by

labbema, Hermans and van den Broek [9], Duin [8], Chow, Geimn and Mi H,

Bowman, Hall and Titterington [4] and MA.rron 114], [15]. The last thrcc

papers take quite a general view of the principle of cros \'aIt1iitLoh.

A recent survey by Titterington [22] set. cross-vlIda1 t i,)i ,It, k,'I t.x

as a smoothing technique. First- and second-order propu: .w' t:

diffference between ISE and MISE have been examined by H. j , i ,,: , : i

[1], Rosenblatt [18], Cs6rgd and Rdv[sz (pp. 22' 2291: .

[12] . Finally, we should point out that ., i thigh I I:,a

such as MISE, are very widely accepted, the,,, ,o exis.t .i it rl, I

examples include supremum measures (Si I ven nt, 20] and I ve,-,.

(Devroye and Gybrfi [7]).

I % . -..- .
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2. Resullto. For the sake of clarity and brevity we shall state and

prove our main results for the case of one-dimensional data, in the cuntext

of a positive kernel. Towards the end of this section we shall show that

the theorems are readily extendible to any finite number of dimensions,

and to more general kernels which may become negative in order to reduce

bias.

We impose the following conditions on K and f:

(2.1) K is a compactly supported, symmetric function on R with

Hblder-continuous derivative K', and satisfies

f K = 1, f z2K(z)dz -2k 0.

(A function g is Hblder continuous if jg(x) - g(y)j < cjx-yL' for some

c, c > 0 and all x,y.)

(2.2) f is bounded and twice differentiable, f' and f" are bounded and

integrable, and f" is uniformly continuous.

Define integrated square error A, mean integrated square error

M E(A), and the cross-validatory criterion CV as in Section 1. Set D

A-I, and notice that CV = A+-ff 2 , where

n
f ff - n - 1  fni (X)n i= 1 n

Recall that ho, h and h minimize ,CV and IM, respectively. Obscr, ve that
c o

M(h) = (nh)- ; K2 + (1-n-1)f ifK(z)f(x-hz)dz;2dx

2 f f(x)dx f K(z)f(x-hz)dz + f f*?
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We may derive expressions for M'Ch) and M"(h) by differentiating under

the integral signs in this formula. In that way we may deduce that,

with Cl f K 2 and c2- "k2 f(f,,)2 we have

M(h) cl(nh) -I + c2h4 + o{(nh)
-I + h 4

Nf'Ch) = 2cl(nh3 )-I + 12c 2h2 + o{ (nh3)- + h2}

h - n 1 / 5 whr o
= C/C)/5 n

as h -0 and n-. Consequently, h oc 0on where co (c,/4c2) , and

"(h " c3n-215 where c3 = 2C0
-
3 + 12c2Co

2 . Set

L(z) Z -zK(z),

2 _(2/co)3 (ff2) f[fK(y+z){K(z) - L(z)}dz] 2dy

+ (4kco){f(f,,) 2 f - (ff,,f) 2 }
.2 (2/co)3 (ff2) (fL 2 ) + (4kCo)2 f(f,,)2f_ (ff,,f)2 

c f f

The structure of our arguments is very simple, and so we shall

prove our main results here. The lemmas in Section 3 supply all the rigour

needed, and we shall refer to them as required.

First, we prove a limit theorem for h - h . Observe that

(2.3) 0 = A(h) = M'(h ) + D'(h ) h -h )M"1(h*) + D'(h )

where h* lies inbetween h and h . By Lemma 3.3,h = h * 0 (n - 1  ) for
0 0 'o 0 p

^ (n-7/10)
some ' 0, and so by Lemma 3.2 (with hl =ho), D'(ho) = D'(ho) + O (n

7/10 .)7/10But Ierjrna 3.4 declares that n D1 (ho) N (0,o), and so n/ D' (h)
0 0 0

must have the same weak limit. Since h*/h P I, it is easiiy shown tlt
0

CI'1*) cn-2/5 + 0 (n 2/S). 7omining the ustinutcs from (2.3) do-,n,

. . 2 .)." "om" "i"



we conclude that

(2.4) n3/100 ° _ho) o. N(0,o 0 C 3

Next we prove a limit theorem for hc -h o. Notice that

" ) 0 = CV', (he cc ,\ (he D + )

(hc - ho ) f '(h*l + D'(h) + 6' h

where on this occasion h* lies inbetween h and ho c

Using Lemmas 3.2 and 3.3 in the same manner as before, we find that
^ -7/10)

D'(h C) + Gz'(hc) = D'(h ) + 6'(h ) + o p(n . Lemmas 3.4 and 3.5 imply

that Df(ho) + 6.(h0) = Op(n- 7/10 Since h*/h p 1, it is easily shon

that M"(h*) = c n-2/S + 0p(n-2/5). Using these results in (2.5), we find

that

- h )c3 n -2/5 (1)} + p 
..

c  {o 3 p p( - / 0

and so h -h = 0 (n 3/10 This means that
c 0 p

(h - h )Nr(h*) =(h - h)c 3 n -2/5 (-7/10c ho0 '(* =  01 3 o

and so we may refine (2.5) as follows:

O = (hc - h )cn2/5 + D' h0  + f'S(h o) o p (n- )

We already know from the previous paragraph that

O0= (h°  ho)c 3n-215 + D'(ho) + Op(n -7 /-7/10

Subtracting:

0 (h h )c n 2/5 + L,(h + o -1 0}" C P I13



This result and Len i 3.5 entail

(2.3) n/10 - 7 2n (hc ho0) ' O c cC3 ) "

We pause to combine (2.4) and (2.6) into a theorem.

TIIEOREM 2. 1. Unrder corii' tiors (2.1) ard (2.2),

-1h0) D 2 -2 3/10 D 2 -2
11 ( 0o ho) - N(O,%c 3 ) n (hc h) "N(Oc)

Having derived these formulae, it is only a short step to describe

the amount by which h and h fail to minimize integrated square error.o c

For that purpose we impose an additional condition on K:

(2.7) K has a second derivative on R, and K" is H6lder continuous.

Let h denote either h or hc, and notice that

A(h) - A(h ) = (h-h ) All(h*)

I
where h* lies inbetween h and h • In view of Lena 3.6 aid the fact

0

tha h*hP~ (h*) = NP?~h*) + o 1)(n -2S But M(h*) c 3n -2S+

-2/5 -3/10o(n ,and so, since h-h =0 (np o p3

h ( o2 -2/5 -1
i(h) fh( = 21 (nh cn -

Our next result Is now inmediate from TMcorc-r .

'i L -MR M .. I, C-: .

• h I .q
• • . . - ,. - . ..

....... .....°................... .. .d.N . ...



-8-

In the case of p dimensions we should define . by

L(z) -p - (i)K.(Z)
i~l 1

where z = (z( ) ,...,Z(p ) ] and K.(Z) = (i))K(z). We assume p-1

z:vI iona! versions of t2.1), (2.2) and (2.-), and define

k s '-(:jdz (not depending on i), c 1  fK, c2 2

c (pc1/4c2 ]l/(p+4) 3 (p+2) + 12C2C 2
0 P(P+l)c c 0 2 o

2 piP-2
8pcP(ffi) ffK(y+z)!K(z) L(z)jdz]dy

+ (4kc o)" jf(vif) 2 (ffv'-f)2

') -Pr-? 2 2 ? 2 ) ') ?
8p'c 0P-(ffi)(fL2) + (4kc )2iff(vif)2 _ (ffvif)2, .

C0

Theorem 2.2 holds as before, and the only change to Theorem 2.1 is that

the factor n53/10 should be replaced by n
(p+ 2)/2 (p+4)

2.2. , r' K,. The forms of Theorems 2.1 and 2.2 reiin unchanged

,f ,c admit nore general kernels. To illustrate this, we -.hall confine

the case pAl. Higher dimensions may be treated similarly.

Schosen so that fK=l and for some integer t 2,

Kr:)Qi = 0 for I - j < t-l, jztK(z)dz # 0,

-ici 10 , .,i i ;.o enjoy: these iupe rties. A version o h . eore. .

*,; i d. i ,.Lich n-3ju in replaced by n' , i reorem '2.2 ho lds ,s

.,. -: .:." , , o . , . K, ... thL Sake A1 S " iI IC tV :, hall

coni n . t tent on to t ho case of j .0 I. i V in o Ki n 1 n i1K1 (liO - m nsi . 1

t~i. ~ sn ii JJLI to oir convention, >. iL-<uod in Sect ion I , that

"hetter" s iwunuo n arc tha o on' xdch give c:k;; le; integrat o_ [ nur eri'or.

* . .



LLA.M 3. . U'f , i zo, (2. 1), (2. 2) . 7) ,. .,'a:

0~~ -

O -a-b, ,

(3.25) sup D"(n- 1 /5 t) = o(n-2/5).

a<t<b

PROOF. Fi-rst derive an analogue of (3.1), using an almost identical

Srg 2tz

sup E Tn!/D"(n- t) < C(a,b,i).
n ;a<t<b

Then follow the proof of Lenma 3.2, to conclude that (3.25) holds, and

in fact the right-hand side equals 0 (n-2 - ) for some c > 0.

p

I

I
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'>1 = -kh' f {K( ) + L(-h $)j f"'(x) (y-)dy K + och

: -2k h3 f f"f + oChS),

(k h f[f{K ) + 1j4 )}f"(x)x] f(v)dv + o(h

4kh 0 j (f")f + o(h ).

Result (3.21) now follows from (3.23).

LLM4.\ 3.5. n70'(h ) N(0 c ) .

PROOF. The mdrtingale methods and Cram6r-Wold device used to prove

iermi 3.4, are also applicable here. The argument is based on (3.6)

uistead of (3.7. We shall prove only the analogue of (3.20):

'4) rl 'va i - c ff2) f(K-L)'.

:,) oglic of 13.2 1 , which declares thit n/ 9varfT,) conx'c rges to the

,: ! 1 -in 3. 2V, follows as before.

!1,) 1, tha t 1-, b 1 ) i . -

VA I

var . - I B n -' I ,¥1, 9 -

I ._

.in -h " B -. . - , ..

. .o- ...h r.
o0

"" - 2 :.-:, i i -::. .-2 1- : :.5 ,:. : .,.. .: . .::.- ! . _: i : {

i " " - "-' "II., ' " " "
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2 ~ (2
(3.22) var(S1 ) = n h (ff-) f ( - 21 - 4 "

+ o(n 2h ° ),
0

where

,i1(Y) = JK(z)K(y+z)dz, 32 (y) = ji.(z)l(y+z)dz,

3 (y) = fK(z)L(y+z)dz, 24 (y) = jL(z)K(y+z)dz = 3(y).

Since 22 fe then

f(2' - 231 3 - 2312 232 + '3,4) = 2f( 1 - )4,

and so (3.20) is immediate from (3.22).

To prove (3.21), observe that

(3.23) var(S2) = (nho)-2 n(v2- V 2

where

v= E(Jf(K(()"E-j2Efn(xIh) Egn(x h) - (x)

XN i
+ L( E-){f(x) Efn(x [h)}]dx,)

As h+0,

E{f (xh.,} - f(x) = k h 2f"(x) to (h )

n?

{g n(xlh)} - f(x) = 3k h 2f"(x) + o(h2).

Estimates of this type give:
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If we write S1 = < A(Xi,X j ) and S= a(Xi), then E{A(Xi,X.)iX j J 0
ji

almost surely for each j < i, and so far any real c and d, the variables
i-1

Y. c y A(Xi,X.) + d a(Xi) , I < i < n,
1 j=l --i) 1-- _n

are zero-mean martingale differences with respect to the -fields
n

F{X1 ,. .. ,X1i  In this sense, c S1 + d S 2  Y is a arztiniaIlc.2 i=1

The argument leading to Hall's [12] Theorem I shows that c S1 + I S,

is asymptotically normally distributed with variance c- var + d- vaI-S)).

This property, together with the Cram6r-Wold device, permits us to

complete the proof of (3.19) by showing that

(3.20) ng/Svar(S1 ) - 2 c0(ff2) f[f.(y+z)KK(z) ..Ii)!dz] 'I,

(3.21) n /5var(S2) 4 k -C{(f")2f

- 0

Let

'Y (x,y) [E'K( ) - E - tK( )y],
o 0 1 0 h

= E[{L ) - EL( '{1( ) EL E( ) ,
o 0 0

3 x,y) = E[iK( ) - EK( )){L(5) )

o0 0 0

and 4.4 (x,y) x3 (vX). Then

var(S) (nh) n(n-1) 4f (2% ' - 1 "

The functions arc, covariances, and ea- ma'y he expressed Ln the forn

iI(UV) - E(U)EV) for variables U and V. \ 1 ittle algebra shows that

the term E(U)L(V) nakes a negligible contributi-n, and in fact
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Also by Lerma 3.2, A'(ho) = D'(ho) 0 (n- 3/5-), and so

(3.18) 0 (n3  ) M'(h) - M'(h) =(hh) (h*),

where h* lies inbetween h and h . As in Section 2, M=(h*) C 3n 215

+ (n-2/5 Using this estimate in (3.18) we conclude that

= (n /S-), as required.

To treat hc-hol, notice that hc/ho - 1. Therefore
A A

CV' (ho 0 CV' (ho0 CV' (hc = ' (ho0) - ' (hc  
+ 6' (ho0)  6'(hcd"

M'(h) - M' h) + Op(n-3/5-E,

-o5-) an soabfr

again using Lemna 3.2. But CV'(h 0) = M'(h o) + O (n
3 /5 -) and so as before

it follows that hh 0 (n

7/10 D 2LIi31A 3.4. n/ Dt(h ) ). N(0,o ).

PROOF. We shall start from decomposition (3.5), and prove that

9/10 D 2 2
n D90(h0 ) - N(Oc 0a /4). Now, the argument leading to (3.9) gives

-'13/5 -9/10
E{S3Cho)1 = 0(n- ), and so S3 (ho) o p(n-1. Therefore by (3.5),

it suffices to show that

9/10 9/10 D
(3.19) (n Sip n/S? ) * (ZZ

where S. = S.(h ) and Z and Z, are independent normal variables with
1 0 1

2 2
zero means and variances adding up to c 3 /4.

0 0

Our route to (3.19) uses the argument of Hall [12j, and .-o tc

omit many details. The variables S1 and S2 are uncorrelated.
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For a< lim nl/Sh < b, suppose

-i5 ?-1/5-c, --
hl-n = tO<t< ... < tm <_ h + n<t m l..

1- 0 1r-- I M)

where t.i - t i- = n
- for each i. In view of (3.16), to finish the proof

of (3.15) it suffices to check that

sup n7 10'D'(n-/ 5 t) D'(n-/j p 0,
(t.,tj)eT 1..

where T is the set of all pairs (ti,t.) with 0<t.-t. < n and i < in.1j1 J - - 1

For any n > 0,

P{ sup n7/10 ID'(n-1/5t) - D'(n-1/ 5t.)I -(tiftji)e r

(3.17) < E{n-n 7 10 ID'(n- lt i)  D'(n_ t i
(t i ,t )eT ii

-2k 2(- 2 1/5) I
<C n (n )

using (3.3) and the fact that the number of elements in T is of order n

By choosing k sufficiently large we may ensure that tic teim in (3.17) converges

to zero as n --. This proves (3.15). A similar partitioning argument may

be used to prove (3.14).

1,13,M 3. 3. Fo o~ 0,

!h o, + 1h -h = 0(n

PROOF. First we treat h 0-h . It is not difficult to provC, u.sing

techniques of Hall [11] (p. 1160), that h ,/h P i. Therefore b I)\- uiu 3.2,0 0

0L'(h) (hh = M(h1 '(ho p(n M. ).
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and where

IVs i) - Wt(i) < Cn/S is-ti

Hence, for m=2,...,2Z,

Scum (n9 / 10S (n-1/5 - $
I S2 (l S) S (n 1 /5 )) <

< Cn- 9 m/lO+l+m/St Is_tj

This completes the proof of (3.9) and hence that of (3.3). The same

type of argument may be used to prove (3.1), (3.2) and (3.4).

LFMA 3.2. For some c>O and any Oa<b<oo,

! (3.14) sup {JD'(n -i/t)j + 16'(n-i/t) I} = 0(n - 3 5 - )
a<t<b

Furthermore, for any c2 > 0 and any non-random h I asymptotic to a constant

multiple of n-1/5,

(3.15) sup n7 / 1 0{ID'(n- 5 t) -D' (h 1) + (n 1 / 5 t) -6 '(h1 ) ) 4 o.
It-n l/h1I < n 2

PROOF. We give a proof only for D'. The proof for 6' is similar. To

*check (3.15), note that using the decomposition (3.5) of D', the liblder

continuity of K and L, and the fact that both of these functions have

compact support, there is an a >0 sufficiently large that

(3.16) sup D'(n 1 /s) D'(n 1 /StL = 0(n 1 )
a<s't<2b

ts-t

S
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where

E[V t(i)] 0, 

and where

(3.13) IVs(i) - vt(i)l < Cn-2 I s-ti

By a cumuh1mit expansion of the 2k-th moment, to show (3.8) it is enough

to check that for m=2,...,2Z,

ICUm (n9 {s2 1 (n-
1 /s) - S21 (n- 1/St)})l < CIs-t

where cue (.) denotes the m-th order cumulant. But, by the independencem

property of cumulants, -

Sm (9l{$21(n- i/s )  S 21 (n-/t OM

im/10n
= n cumn (Vs (i)- Vt(i))I

< In-m/lO1n -2/ll]s m
< Cnn , Is-tI

= -m/2 Is-ti Cm

where the inequality follows from (3.13). This completes the proof of (3.8).

The verification of (3.9) is quite similar to that of (3.,) so only

dif ferences will be noted. Write
n

-1/5 -2n
S31

(n  t) = n W t(i),
i=1

where

E[Wt(i)] = 0,

.-.. ,....-... .. .- _. 7.... . -
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Hence, X. - .

(3.11) U s(i,j) Ut(i,j)l < Cls-t { (n-i/b) -1[ (1 ) 121
s - [-2,21 n 5b

But,

E[n 9/10{ 1 (n 1/S) Sll (n- 1/5t)}]

(3.12) =-1 1 ./S . L[{Uji 1 ,J 1 ) - Ut(iiJi).

il<.. i<J 2 (i

Rearrange the terms on the right side of (3.12) into 4Z groups where the

term indexed by i1, 1 ... ,i2ZJ 2  is put in the m-th group when there are

exactly m distinct integers in the list ilJl,... li22 ,J 2 . Note that the

cardinality of the m-th group is bounded by Cn , and by (3.10), each term

is 0 in the groups 2k+1,..., 4.. Hence, by (3.11) and integration by

substitution,

E[n9/10 {Sll(n-1/Ss)- S (n-1/S 2j2
) S11(n t}

< C n-112./5 2 nmIs-tj 21:2n 2k/5-m/10

< C2 1s-tl

and the proof of (3.7) is complete.

To verify (3.8), note that by Taylor's theorem, (2.1)(2.2) ( nd the

fact that I. is also syimietric and integrates to 1, for t c (a,b)

I2Ef (xln -1/St) Egn(xfln1/5t) f(x)l < Cn- 2 / S
n

Hence S21 may be written

S-. S(n =) n VtW),

21o

~~~~~~~~~~~~~~~~~~~. . . . .. .,..... ........ ..... . ..-.-- ,- - -... . '.,, . .- .... ">g-.-
. .oO . ." .,'"

"'i~ ' ".""" ''[ 2 ¢ . *--f -'>'' :. ,. -> ,"2 ' , ... . .- • ". ..... : .. . . "-. :
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T 2in(n-1)h} i <_ {B (X.,X.) b (Xi) b (X.) +

n
T (nh) }j {b (X.) - _ f(X.) + ff2 },

Bl(X,,y)  K(x-y)/h), B2(x,y) = li(x-y)/h), b.(x) = EiB.(x,X), 0,

= Etbj (X)i.

To prove (3.3) we shall show that for some E:> 0,

(3.7) En 9 "/O{S (n-/S s) - Sll(n- /St)} 2Z < CIs-tj ,

(3.8) Ein 9/10 {s21 (n-I/Ss) - S21 (n- 1/St)} 2R < Cjs-tL2

(3.9) Eln 13/ 10{( <$31 (-/s) $ 31 (n-/t))I < 2 qCs-tt c

Similar inequalities may be established for the functions S12, $ and

S32.

To verify (3.7), note that SII may be written as

SIl(n-1/t) =n -  Ut(ij) '

l<i<j<n

and Ut(i,j) satisfies

(3.10) E[U (i,j)IX] = E[U (ij)IXJ = 0. .t .L tJ

By the compactness of support hich without loss of generality may be

taken to be [-1,11) and the Itdlder continuity of K, for s,tt (a,b),
x-X. x-X. x-X. x-X .--l/5 )-2 ,. xX X -1/5t)-2 , . x.-_5-

j(n S) JK( _- )K( )dx - (n t) JK( )K( ) -
n s n s n t n t

e X.-X

C 1/5 .1: ~ ~ ~ ~ - (n h) 2]::::::::::: - 1-- ".
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(3.5) D Ch) -(h/2)D' (h) S(h + Sh)

wher S- 121 S2 S21 + S22 ' S3 S31 S 32'

Z - - X-X

S 2(nh) -2f{K(h1) -EK(-L(-- 7 ) -K (x- Ix
1<.i<j <n h

-2 X-x. xX X-X. -
S (nh)- I f [{fK(-F--1) - KU- ' T (-EL-)

+ X-X. - LI(-~}KX-X. (-)jd

h h hh

~21~ ~n x-X. XX-E(xh-

S 21 (nh)l E f{K(-~i - -EK ,h}{2Ef (xIh)- g xl fx d,

S )-1 nl x-X. Xx

f{L(-) I f) - EL(---}{f(x) - Ef (x~h)}dx,
22hn

S3 2  x- 2nh 1 x-X. 2vX~r(

S :z (h) I {K - -) - ___Kd

311 h L~\iJLt h

S K~h EK ( ){L& h 1) -EL(5)]x

(36) 32h (h/h) 1 h) h 2 h

where T11-T12, T2  ) L -xM

6((E



3. Lemmas. The lemmas below were required for the proofs of Theorems

2.1 and 2.2. In Lenmas 3.1-3.5, we assume conditions (2.1) and (2.2).

The symbols C, C1 anc C2 denote generic positive constants.

LFMA 3.1. For each 0 < a < b < - and aZi positive integers Z,

-10 /5 2Z.(3.1) sup Eln 7 /OD'(n- t) < C (a,b, ),
n;a<t<b

(3.2) sup Ein 7 /1061(n - 1 /St)I 2Z < Cl(a,b,Z)•
n;a<t<b

Furthermore, there exists e > 0 such that

C 9.
(3.3) Ein 7/ 10 {D'(n-l/Ss) - D(n-l/St)}I 2Z < C2(a,b,k)ls-tI 1

(3.4) Eln 7/10 (6'(n-i/Ss) - 6'(n-1 / 5 t) c_ F(a,b,9)Is-tI 1
-2

whenever a < s < t < b.

PROOF. We begin by decomposing D' and 5'. Let gn(xlh) (nh) L{(x-Xi)/hi,
i

and observe that

-(h/2)A'(h) = f(f-f)(fn-g n)

f(fnEfn) - f(f-Efn)(gn-Egn)

+ f(fn-Efn)(2Efn-Egn-f) + (gn-Egn)(

+ f(Ef n-f) (Efn-Eg n )

2By expanding f(f -Ef ) as a sum of integrals of squares plus 8 sum
n n

of integrals of products, and expanding ;(f -Ef )(g -Eg ) a similar

way, we conclude that

!:. : " ... :-: .-. . i: . - .:.:: . . . : .: -" '. ' ' "
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probability one. It is easily shown that

(n3/10(h0 -0) n3/10 -{)) C ,z')

say, where (ZIZ 2) has a joint normal distribution with P(jZ.1 ! -2 ) > .

Consequently, the limit

lim P{A(ho) > A(h)}
n-o

exists, and is strictly positive.

0

0

0. . "- .- . . .. .. " -" :l
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Let h be a window satisfying h/h P 1. Assume conditions (2.1),

(2.2) and (2.7). Using the argument leading to Theorem 2.2, we obtain:
.. 2 -2/5 (

(2.8) 0 <. A(h) A(h0 ) 0(h-ho) - {1 p

We shall consider various possibilities for h.

(i) We might explicitly estimate the constant co in the asymptotic

formula h c n - 1/s and take h to be the resulting window. This
00

requires estimation of f(f,) 2 , perhaps by integrating the square of a

kernel estimate of f". Such an approach is really a global version of

Woodroofe's [23] two-stage procedure. Under the smoothness assumption

(2.2), the rate of convergence of such an estimator can be slower than

for any given E £ 0. In consequence, the error -t1o)2 may converge

to zero in probability at a rate slower than n 2 /S - 2 , and by (2.8),

(h) A ) may be no smaller than order n -4 / 5 2. On the other hand,

if h is the cross-validatory window h then A(h) - AXho) is as small as
C0-1

n under the minimal condition (2.2).

(ii) The procedure outlined in (i) is motivated by a desire to estimate

h . Following that philosophy, we would be doing extremely well if we
0

actually knew the value of h . But according to Theorem 2.2, even if we
0

took h=h we would hardly do any better than using the cross-validatorv
0

window he, since in both cases the distance of integrated square error
-1

from the minimun would be order n

(iii) If K is a positive kernel then by the Cauchy-Schwarl z incqial itv,
0 <. (This is true in any dimension. Notice that (K-)

-C

In this sense, taking h=h ° does result in a margijivl improvement over

cross-val idaltion. However, the improvc'nent i. not available with



- , - . - -¢ , - ' . . . . - - - - " .- - . ° . . . : - , - - ; * .- * ;
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-k2 ff (K('Y) + L( f(x)} fxf(y)dy c o (h

- -2k h3 f f"f + o(h3),

(k h ) f[f{K h) + L (4)}f"(x)d:- f(y)dy + o(h6)

2 4h6 f (f,,)2f + ~6.
4k h +' (f")

Result (3.21) now follows from (3.23).

LEM 3.5. n7/16(h0) DN(Oc ).

PROOF. The martingale methods and Cram6r-Wold device used to prove

Lemma 3.4, are also applicable here. The argument is based on (3.6)

instead of (3.5). We shall prove only the analogue of (3.20):

(3.24) n9/ 5var(T1) - 2 col(ff 2) f(K-L)2

9/5The analogue of (3.21), which declares that n var(T,) converges to the

same limit as in (3.21), follows as before.

To prove (3.24), notice that with B = B- B, b b b and

var(W 1)  , 2n(n-)h-i n(n-1)E{B(Xl,X,)- b(X 1) b(X +

-1 2 2)

>"n(n-l)h9 EfB 2 (X1 ,X,) 2 2 (X +

2n ) _ -) 1 -.-L ' X ,

" o "2

= 2n h°  ff{K(Xj) L (xI) f(x)f(y)x dy

o
-2 -1 ~

. .. .. .. . ... . ]

• -'.. - - . . . . - - • -. - .. .. . , -, . , . . , . - " ... .., -. - . -. . - .. -" .7 " . . . . . . . ;
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L'vA 3.6. Under conditions (2.1), (2.2) and (2.7), and for anj

O<a<b<co,

(3.25) sup D"(n-1 /t)I = o (n' 5 ).
a<t<b P

PROOF. First derive an analogue of (3.1), using an almost identical

argument:

sup Einl/2D" (n /5t)I < C(a,b,k).
n ;a<t<b

Then follow the proof of Lemma 3.2, to conclude that (3.25) holds, and

in fact the right-hand side equals 0 (n 2/5 - ) for some c> 0.

41
J

lp

-0

0.

S

0o
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